Physical and biochemical regulation of integrin release during rear detachment of migrating cells.
نویسندگان
چکیده
Cell migration can be considered as a repeated cycle of membrane protrusion and attachment, cytoskeletal contraction and rear detachment. At intermediate and high levels of cell-substratum adhesiveness, cell speed appears to be rate-limited by rear detachment, specifically by the disruption of cytoskeleton-adhesion receptor-extracellular matrix (ECM) linkages. Often, cytoskeletal linkages fracture to release integrin adhesion receptors from the cell. Cell-extracellular matrix bonds may also dissociate, allowing the integrins to remain with the cell. To investigate molecular mechanisms involved in fracturing these linkages and regulating cell speed, we have developed an experimental system to track integrins during the process of rear retraction in Chinese hamster ovary (CHO) cells. Integrin expression level was varied by transfecting CHO B2 cells, which express very little endogenous alpha5 integrin, with a plasmid containing human alpha5 integrin cDNA and sorting the cells into three populations with different alpha5 expression levels. Receptor/ligand affinity was varied using CHO cells transfected with either alphaIIbbeta3 or alphaIIbbeta3(beta1-2), a high affinity variant. alphaIIbbeta3(beta1-2) is activated to a higher affinity state with an anti-LIBS2 antibody. Fluorescent probes were conjugated to non-adhesion perturbing anti-integrin antibodies, which label integrins in CHO cells migrating on a matrix-coated glass coverslip. The rear retraction area was determined using phase contrast microscopy and integrins initially in this area were tracked by fluorescence microscopy and a cooled CCD camera. We find that rear retraction rate appears to limit cell speed at intermediate and high adhesiveness, but not at low adhesiveness. Upon rear retraction, the amount of integrin released from the cell increases as extracellular matrix concentration, receptor level and receptor-ligand affinity increase. In fact, integrin release is a constant function of cell-substratum adhesiveness and the number of cell-substratum bonds. In the adhesive regime where rear detachment limits the rate of cell migration, cell speed has an inverse relationship to the amount of integrin released at the rear of the cell. At high cell-substratum adhesiveness, calpain, a Ca2+-dependent protease, is also involved in release of cytoskeletal linkages during rear retraction. Inhibition of calpain results in decreased integrin release from the cell membrane, and consequently a decrease in cell speed, during migration. These observations suggest a model for rear retraction in which applied tension and calpain-mediated cytoskeletal linkage cleavage are required at high adhesiveness, but only applied tension is required at low adhesiveness.
منابع مشابه
Dynamics of/ 1 Integrin-mediated Adhesive Contacts in Motile Fibroblasts
Motile chick skeletal fibroblasts adhere to a laminin substrate by means of clustered/3~ integrins. These integfin "macroaggregates" are similar to classic focal contacts but do not appear dark under interference-reflection microscopy. They contain ~5 integrin and are associated with extracellular fibronectin. To study their behavior during cell movement, time-lapse, low-light video microscopy ...
متن کاملIntegrin dynamics on the tail region of migrating fibroblasts.
Cell migration is a complex process that can be considered as a repeated cycle of lamellipod extension and attachment, cytoskeletal contraction, and tail detachment. While lamellipodial and cytoskeletal phenomena are currently the focus of considerable research on cell migration, under many conditions locomotion appears to be rate-limited by events at the cell rear, especially release of cell/s...
متن کاملActivation of Rhoa and ROCK are essential for detachment of migrating leukocytes.
Detachment of the rear of the cell from its substratum is an important aspect of locomotion. The signaling routes involved in this adhesive release are largely unknown. One of the few candidate proteins to play a role is RhoA, because activation of RhoA in many cell types leads to contraction, a mechanism probably involved in detachment. To study the role of RhoA in detachment regulation, we an...
متن کاملDynamics of beta 1 integrin-mediated adhesive contacts in motile fibroblasts
Motile chick skeletal fibroblasts adhere to a laminin substrate by means of clustered beta 1 integrins. These integrin "macroaggregates" are similar to classic focal contacts but do not appear dark under interference-reflection microscopy. They contain alpha 5 integrin and are associated with extracellular fibronectin. To study their behavior during cell movement, time-lapse, low-light video mi...
متن کاملIntegrin-cytoskeletal interactions in migrating fibroblasts are dynamic, asymmetric, and regulated
We have used laser optical trapping and nanometer-level motion analysis to investigate the cytoskeletal associations and surface dynamics of beta 1 integrin, a cell-substrate adhesion molecule, on the dorsal surfaces of migrating fibroblast cells. A single-beam optical gradient trap (laser tweezers) was used to restrain polystyrene beads conjugated with anti-beta 1 integrin mAbs and place them ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of cell science
دوره 111 ( Pt 7) شماره
صفحات -
تاریخ انتشار 1998